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Abstract-Time-dependent mass transfer by natural convection in two-dimensional open cavities is studied 
using the finite element method. Emphasis is placed on a system simulating selective chemical etching of thin 
solid films for microelectronic device fabrication. Time-dependent local and spatially-averaged Sherwood 
numbers are reported for a Schmidt number of lo’, cavity aspect ratios (depth : width) of 1: 4, 1: 1, and 
2: 1, and for Rayleigh numbers of up to 10’. The flow and concentration fields are symmetric at early 
times. However, symmetry breaking and oscillatory flows occur at later times. The formation of plumes 
result in effective communication between the external ‘fresh’ etching solution and the ‘contaminated 
solution within the cavity, especially for deep cavities which are otherwise difficult to access. Forced 
convection mass transfer is also studied for Peclet numbers of up to 104. When compared to forced 
convection, natural convection resulted in one order of magnitude better mass transfer in a 2: 1 cavity. 
The results have important implications for deep anisotropic etching of thin solid films and other related 

processes. 

1. INTRODUCTION 

NATURAL convection in cavities is encountered in a 
variety of engineering problems and has received con- 
siderable attention in the literature [l]. In particular, 
natural convection in closed cavities has been studied 
extensively both theoretically and experimentally 
[2-4]. However, natural convection in open cavities 
or partial enclosures has received much less attention 
[5, 61. This may be due to the complex interaction 
between internal flows and external conditions. In 
contrast, forced convection heat or mass transfer in 
open cavities has been studied to a great extent [7, 81. 
The focus of the present work is an application of 
mass transfer by natural and forced convection in the 
manufacture of microelectronic devices. 

FIG. 1. Schematic of selective etching of a thin film through 
a resist mask : (a) before etching; (b) after etching. 

Wet chemical etching of thin solid films using a 
photoresist mask (Fig. 1) is widely employed in the 
microelectronics industry [9]. Examples include etch- 
ing of GaAs used in the fabrication of optoelectronic 
devices [lo], and etching of copper films used in the 
fabrication of printed circuit boards. A common 
characteristic of the above and other similar processes 
is that the reaction rate and its distribution along the 
etching surface depend in a complex manner on the 
interaction among fluid flow, mass and heat transfer, 
and chemical reaction kinetics. In addition, the reac- 
tion rate depends on the instantaneous shape of the 
topographical feature or cavity, which in turn affects 
the further shape evolution of the cavity. The fol- 
lowing discussion focuses on etching, although similar 
principles and methods of analysis apply to related 
processes such as electrodeposition through masks 
[ 111, and even localized corrosion [ 121. 

Important goals of the etching process are high 
etching rate, and low mask undercut (anisotropic 
etching). The process is often limited by mass transfer 
of the etchant from the solution bulk to the surface, 
or removal of the reaction product from the vicinity 
of the surface. Therefore, different methods have been 
used to enhance the mass transport, most noticeably 
impinging jet or cross flow over the cavity [S]. At the 
initial stages of the process, when the cavity is still 
shallow, such methods can be effective since the exter- 
nal flow can invade the cavity bringing ‘fresh solution 
into the cavity and washing the dissolution products 
away (Fig. 2(a)). As the cavity deepens, however, 
recirculating flow patterns develop within the cavity, 
and after a certain aspect ratio (depth: width) has 
been reached, the external flow can no longer pen- 
etrate the cavity [13]. In such a case, communication 
of the ‘contaminated’ solution trapped in the cavity 
with the external flow occurs only through a boundary 
layer along the cavity mouth (Fig. 2(b)). Since the 
recirculating eddy motion is weak, mass transfer and 
etching rate are drastically reduced. Further, the long 
etching times required result in excessive mask under- 
cut. The situation becomes even worse when the cavity t Author to whom correspondence should be addressed. 
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NOMENCLATURE 

A aspect ratio, h/2L u dimensionless fluid velocity vector, Lu/D 
C species concentration [mol m-‘1 UC fluid velocity at center of cavity mouth 

c* far-field species concentration [mol m- ‘1 [m s-‘1 

c,,t species concentration at saturation u, x-component of dimensionless fluid 
[mol m-9 velocity 

c dimensionless species concentration, VI. y-component of dimensionless fluid 

(c--c,)/(c,,-cc,) velocity 
D diffusivity [m’ s- ‘1 X horizontal spatial coordinate [m] 
h cavity height [m] x dimensionless horizontal spatial 

j unit vector in the y-direction coordinate, x/L 

k, local mass transfer coefficient [m s- ‘1 J vertical spatial coordinate [m] 

P pressure [pa] Y dimensionless vertical spatial coordinate, 
P dimensionless pressure, J/L. 

(P-pa)L*i(~D) 
Rfl Rayleigh number, rp(c,, - c,) L’/(vD) Greek symbols 
Re Reynolds number, u,L/v gravitational acceleration [m s-‘1 
SC Schmidt number, v/D ;I coefficient of volume expansion 

Sir, local Sherwood number, k,L/D [m’ mol- ‘1 

SL average Sherwood number P viscosity [kg m- ’ s- ‘1 
f time [s] v kinematic viscosity [m* s- ‘1 

T dimensionless time P density [kg m- ‘1 

u fluid velocity vector PI far-field density [kg m- ‘1. 
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FIG. 2. Schematic of streamlines for flow over cavities. (a) 
Forced convection over a shallow cavity ; external flow pen- 
etrates cavity resulting in good mass transfer. (b) Forced 
convection over a deep cavity; relatively slow recirculating 
flow reduces communication between outside solution and 
that inside cavity resulting in poor mass transfer. (c) Natural 
convection in deep cavity; communication between outside 
solution and that inside cavity is restored resulting in good 

mass transfer. 

becomes deep enough for a second eddy to form 
underneath the first. The solution in this eddy is 
almost stagnant and transport is governed by 
diffusion. 

A unique method to enhance mass transport in 

deep cavities makes use of density-gradient-induced 
natural convection [ 141. In a typical etching situation, 
the solution density adjacent to the dissolving solid 
surface is different than in the bulk. Such density 
gradients can induce fluid motion by natural con- 
vection which can be further enhanced in an artificial 
gravity environment, e.g. by rotating the substrate. 
The natural convection flow patterns disrupt the mass 
transfer boundary layer which would otherwise exist 
along the cavity mouth. Fresh solution can now pen- 
etrate deep into the cavity and reaction products can 
be swept away (Fig. 2(c)), i.e. the communication 
between the external solution and that inside the cav- 
ity is greatly improved. The result is improved mass 
transfer rate and, if the process is mass transfer 
limited, improved etching rate. 

Recently we developed a mathematical model to 
study the effect of mass transport and chemical reac- 
tion on the shape evolution of two-dimensional cavi- 
ties undergoing etching [15]. The case of cross flow 
over the cavity in the absence of natural convection 
was considered. The purpose of the present inves- 
tigation is to study the mass transfer enhancement in 
open cavities due to natural convection induced by 
density gradients during etching of a solid film. A 
fixed value of the Schmidt number SC = 1000 was 
used which is typical of aqueous solutions. The effect 
of cavity aspect ratio and of Rayleigh number Ra was 
examined. Aspect ratios (depth : width) of 1: 4, 1: 1, 
and 2 : I were studied with Ra up to IO’ (Ra was based 
on the cavity halfwidth). The results were compared 
to mass transfer due to forced convection alone in a 
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cross 0ow configuration with Peclet numbers 
Pe = lo*, IO’, and IO4 (Reynolds numbers Re = 0.1, 
1, and 10). Although chemical etching is being 
emphasized, the results of this study are not limited 
to the etching problem but may be applied to, for 
example, electrodeposition through masks [ 111, or 
other natural and forced convection problems in open 
cavities. This study considered cavities of a fixed shape 
as a prelude to studying the effect of natural con- 
vection on the shape evolution of cavities. 

2. MATHEMATICAL FORMULATION 

2.1. Natural convection system 
A schematic of the free convection system is shown 

in Fig. 3. A solid film is partially protected by a resist 
mask having thickness h. The mask forms a rect- 
angular cavity of width 2L in the unprotected area 
of the film. The third dimension (along z) of the cavity 
was assumed long and therefore a two-dimensional 
system was considered. The etching solution reacts 
selectively with the exposed film without attacking the 
resist mask. Etching takes place under the influence 
of an acceleration field as shown in Fig. 3. The film 
dissolution products enter the solution altering the 
local solution density. This in turn induces convective 
flow patterns, first within the cavity and later in the 
near-cavity outside region. Such convective flow pat- 
terns affect the rate of mass transport to and from the 
reactive surface. The dissolution rate is assumed to be 
controlled by the mass transport of reaction products 
away from the surface. Hence the product con- 
centration on the film surface is taken equal to the 
product saturation concentration in the etching solu- 
tion. Our purpose is to compute the time-dependent 
local and spatially-averaged mass transfer rate for 
different cavity aspect ratios A (= h/2L) and Rayleigh 
numbers. As time progresses and the film dissolves, 
surface r, recedes altering the cavity shape and 
dimensions. In the present work we are interested 
in the initial stages of dissolution when the cavity 
dimensions are still essentially unaffected by the dis- 
solution process. The effect of natural convection on 

r, ,/________________________________-_.,, 
,’ 

\ 
: 

Etching 1 

n Solution I 
t I 
I I 

FIG. 3. Schematic of the natural convection system. The 
acceleration field a is applied in the y-direction. 

the shape evolution of the cavity will be reported 
elsewhere. 

The fluid was assumed incompressible and New- 
tonian, and the system was assumed isothermal with 
constant physical properties except for the solution 
density. The usual Boussinesq approximation was 
applied, assuming a constant density in all terms 
except the body-force term of the Navier-Stokes 
equations. The solution density was assumed to 
depend on the concentration of the reaction product 
according to the following equation of state : 

P = P,P +8(c-cm)l. (1) 

Using the above assumptions the governing equations 
are written as 

au 
z+u*Vu= -~V~~+vV*uf~z inR (2) 

V-u=0 inR (3) 

2C 
z+u*Vc= DV’c inR. (4) 

The governing equations are rendered dimensionless 
by defining 

(5) 

c-c, 
cc----- 

csat -c, 

cc~(c,I-c,)L~ 
SC=;, Ra= Dv . 

(7) 

(8) 

The dimensionless form of the governing equations is 

$r$ +U-VU) = -VP+V2U+Ra Cj in R (9) 

V-U=0 inR (IO) 

dC 
z+U-VC=V2C inn. (11) 

The corresponding boundary and initial conditions 
are 

dU 
-=O, C=O on I-, 
En (12) 

_I 
U=O, g=O on r2 (13) 

U=O, C=l on I-, (14) 

U=O, C=O in R at T=O (15) 

where a/an denotes the gradient in the direction of the 
outward normal to the boundary. 

Boundary condition equation (12) implies that the 
product concentration far from the reacting surface 
remains equal to c,. Boundary condition equation 
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(13) implies that the product does not react with or 
penetrate into the mask. The cavity halfwidth L was 
used as the characteristic length to define the Rayleigh 
number, although the cavity depth h may be a more 
appropriate scale. The reason for this choice was that 
the work presented here is the first step towards study- 
ing the effect of natural convection on the shape evol- 
ution of cavities, in which case the cavity depth will 
be a time-varying quantity. 

The main parameters of the problem are the 
Schmidt number SC, the Rayleigh number Ra, and 
the cavity aspect ratio A. The dimensionless local 
mass transfer rate was expressed as a local Sherwood 
number 

(16) 

The average Sherwood number along the reactive sur- 
face was defined as 

In the extreme case of Ra = 0, there is no convective 
motion, and mass transfer occurs by diffusion alone. 

2.2. Forced corwection system 

The case of purely forced convection was examined 
as well in order to compare the mass transfer results 
to the natural convection case. The forced convection 
system is shown in Fig. 4. The system is identical to 
that of Fig. 3 except that the acceleration field is 
absent, and that a shear flow prevails far from the 
cavity. The same governing equations apply as before 
(equations (9)-(11)) with Ra = 0. In this case the 
relevant parameters are the cavity aspect ratio, the 
Peclet number defined by equation (18) below, and the 
Reynolds number Re = Pe/Sc 

(18) 

The boundary and initial conditions appropriate for 

Fkrid Flow r, 

I / 1 

n 

EktlillQ 
Solution 

FIG. 4. Schematic of the forced convection system. A simple 
shear flow prevails far from the cavity. 

Table 1. Dependence of U.x along boundary I-, (Fig. 4). and 
of Sherwood number on Peclet number and cavity aspect 

ratio 

Cavity aspect 
ratio 

Peclet 
number ux on I-, 

Average 
Sherwood 

number 

10' 2.457 x IO” 2.463 
I:4 10’ 2.460 x 10’ 4.73 1 

IOJ 2.607 x 10’ 10.96 

IO' 2.220 x 10’ 1.071 
I:1 10’ 2.222 x IO’ 2.534 

IO’ 2.328 x IO5 5.904 

10' 2.216 x 10’ 0.3746 
2:l 10” 2.218 x IOJ 0.5404 

IO’ 2.324 x IO’ 0.8378 

the forced convection system are [ 12, 151 

U=O. C=l on r, (19) 

ZU 
-=q,=O, C=O on r2 
?tl (20) 

TC 
CJ, = constant, Cl, = 0, - = 0 on r3 (21) 

zt1 

su . 
-= U, = 0, g= 0 on r, 
?n 

u = u(), 
X 
-=0 on r5 &l 

(22) 

(23) 

U=O, C=O in R at T=O. (24) 

The Peclet number does not appear explicitly in the 
governing equations or boundary conditions. 
However, Pe is directly related to the applied shear 
rate and therefore to the value of U.r on boundary 
r3 (boundary condition equation (21)). The relation 
between Pe and U, is shown in Table 1. The effect of 
forced convection on the shape evolution of open 
cavities during chemical etching was examined in an 
earlier work [ 151. 

3. METHOD OF SOLUTION 

The solution to the governing equations (9)-(11) 
subject to the associated boundary conditions (12)- 
(15) was obtained by using the finite element method. 
The finite element mesh used for the case of a cavity 
aspect ratio A = 1 is shown in Fig. 5. The mesh was 
made finer around the mouth of the cavity and within 
the cavity where steeper concentration gradients are 
expected. Because the physical domain is unbounded, 
a problem arises regarding the size of the com- 
putational domain, more specifically the location of 
boundary r,. Various methods have been proposed 
to overcome the difficulty associated with an 
unbounded domain [ 16-181. One approach is to pos- 
ition ra far from the cavity mouth, so that conditions 
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FIG. 5. The finite element mesh used for a 1 : 1 cavity. The dotted elements are mapped infinite elements; 
the rest are normal finite elements. 

near the cavity are not affected by the exact location 
of the boundary. This approach may result in an 
unnecessarily large computational domain and hence 
more CPU time to obtain the solution. Another 
method is adopted in this work, namely the ‘mapped 
infinite element’ method [19, 201. This method is par- 
ticularly attractive when used in combination with 
conventional elements. The elements of the outermost 
layer in Fig. 5 (dotted area) are mapped infinite 
elements. The rest are conventional bilinear quadri- 
lateral elements. The total number of elements 
and nodal points used in Fig. 5 are 1080 and 1162, 
respectively. 

The velocity and concentration fields in the com- 
putational domain were obtained by using the penalty 
function formulation and the Streamline Upwind/ 
Petrov Galerkin (SU/PG) finite element method [21, 
221. Time integration was performed using an implicit 
predictor-multicorrector scheme [23] with variable 
time step. A fixed time step may be used as long 
as stability is assured. However, the fixed time step 
method may not be as cost effective. For example, a 
small time step may be required to accurately track 
the transient behavior of the system during a par- 
ticular time period, whereas a much larger time step 
may be adequate for a different time period. In such 
cases, a variable time step is more effective. The vari- 
able time step algorithm used in the present work is 
similar to that used by Bailey [24]. 

The transient solution to the two-dimensional prob- 
lem was obtained in a sequential manner by decoup- 
ling the velocity and concentration fields [25, 261. At 
time T”, the velocity field U” and the concentration 
field e were known. Here superscript n denotes the 
nth time step and To = 0. Then U”+ ’ and C”+ ’ were 
obtained through the following substeps. 

(1) With C’known, U”+ ’ was calculated from equa- 
tions (9) and (10) and the associated boundary con- 
ditions with an implicit predictor-multicorrector 

algorithm. If more than five iterations were needed in 
the corrector step to obtain U”+ ‘, the time step was 
halved and calculations returned to the predictor step. 

(2) With U’+’ known from substep 1 above, C”+ ’ 
was calculated from equation (11) and the associated 
boundary conditions with an implicit predictor-multi- 
corrector algorithm. 

(3) The Euclidean norm V”+ ’ of U”+ ‘, and in turn 
the quantity E was calculated by 

IV”+‘-- V”I 
&= ynCl . (25) 

If E c 0.01, the time step was doubled. If E > 0.1 the 
time step was halved. If 0.01 < E < 0.1 the time step 
was not changed. A procedure identical to the one 
described above (substeps l-3) was then used to 
obtain U”+’ and c”+ *. Calculations were performed 
on a CRAY X-MP supercomputer. 

In the case of forced convection there is no need to 
use infinite elements since the concentration boundary 
layer is always confined near the wall, for the par- 
ameter values used. In this case, the position of bound- 
aries r2, r,, and r., was chosen at X = - 5, Y = 4, and 
X = 5, respectively. Numerical experiments revealed 
that the results were not affected by positioning 
boundaries r2, rJ, and r4 further away from the 
cavity mouth. Only the steady-state solution was com- 
puted for the forced convection system. The velocity 
field was obtained by using the penalty function for- 
mulation and Newton-Raphson iteration [21]. The 
velocity field was subsequently used to calculate the 
concentration field by the SU/PG method. 

4. RESULTS AND DISCUSSION 

For the natural convection system, results are pre- 
sented in terms of time-dependent local and spatially- 
averaged Sherwood numbers for different cavity 
aspect ratios and Rayleigh numbers. For the forced 
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convection system results are shown in terms of the by which denser solution flows out of the cavity caus- 
steady-state local Sherwood number for different cav- ing ‘fresh’ solution to flow into the cavity. This 
ity aspect ratios and Peclet numbers. Velocity vector incoming flow drives two eddies which fill a large 
plots and iso-concentration contour plots are used to fraction of the cavity volume. The outcoming plume 
depict the flow and concentration fields, respectively. creates, by viscous drag, an almost horizontal flow in 
All the results shown below were obtained for a the near-cavity outside region, which turns upwards 
Schmidt number SC = 103. further from the cavity. In addition to the primary 

Before any further calculations were made, the plume, two secondary plumes are formed near the 
accuracy of the natural convection numerical code corners of the cavity mouth. At later times, symmetry 
used in the present work was tested by compar- breaking is observed (Fig. 7(b)) which becomes even 
ing with the solution of natural convection in en- more pronounced at a still later time (Figs. 7(c) and 
closed cavities given by Taylor and Ijam [2]. The case (d)). Asymmetric flow patterns in an otherwise sym- 
of unity cavity aspect ratio with Prandtl number metric two-dimensional vapor-phase epitaxy reactor 
Pr = lo3 and Ra = lo5 was chosen for comparison. were recently reported by Weber ef al. [27]. The 
Results on the temperature and velocity profiles at authors also presented a bifurcation diagram showing 
the cavity mid-height agreed to within 5%. The the transition from symmetric to asymmetric flows. 
accuracy of the forced convection code has been Figure 8 shows the local Sherwood number dis- 
verified previously [ 151. tribution along the reactive surface for the same times 

as in Fig. 7. The mass transfer rate is minimum at the 
4.1. Natural convection system corners where the mask meets the reactive surface. 

Figure 6 shows the time-dependent spatially-aver- This implies that the mask ‘undercut’ would be smaller 
aged Sherwood number for the 1:4 cavity and for than the etched depth, yielding an etch profile which is 
different Rayleigh numbers. At early times, mass not isotropic. Etch anisotropy is important especially 
transfer is due to diffusion alone and does not depend when deep etching is desired. At early times, a local 
on the value of Ra. After a certain time, which depends minimum in mass transfer rate is observed at or near 
on the value of Ra, convective instability sets in and the middle of the active surface. This local minimum 
the mass transfer rate increases over the diffusion rate. is caused by the plume of denser solution flowing 
As Ra increases, the instability occurs earlier and the out of the cavity. The mass transfer rate distribution 
mass transfer rate increases. For low values of Ra, the becomes less nonuniform when the primary plume 
mass transfer enhancement is relatively small and a shifts to the corner of the cavity mouth (see also Figs. 
steady state may be obtained. For higher values of Ra 7(c) and (d)). The mass transfer rate distribution can 
(e.g. for Ra = 104) oscillations in the mass transfer also be deduced from the concentration contour plots 
rate are observed. Similar oscillations were observed (Fig. 7), in which the spacing between the contours is 
by Ettefagh and Vafai [5] who studied natural con- an indication of the local mass transfer rate. 
vection in open cavities with a porous medium. Figure 9 illustrates the spatially-averaged Sher- 

Figure 7 shows the concentration and flow fields wood number as a function of time for the 1 : 1 cavity, 
for the 1 : 4 cavity, for Ra = 105, and at four different with Ra as a parameter. The same general qualitative 
times which are marked by crosses on the cor- features are observed as for the 1 : 4 cavity. However, 
responding curve of Fig. 6. At early times, the con- for a given value of Ra, convective instability sets in 
centration and flow fields are symmetric with respect at a later time as compared to the 1 : 4 cavity. This is a 
to the X= 0 axis (Fig. 7(a)). One observes the for- manifestation of the stabilizing effect of the sidewalls. 
mation of a primary plume along the axis of symmetry Furthermore, the mass transfer rate is lower for the 

higher aspect ratio cavity. 
Representative concentration and flow fields for the 

1 : 1 cavity are shown in Fig. 10 for Ra = lo“, and for 
the times marked by crosses on the corresponding 
curve of Fig. 9. As for the 1 : 4 cavity (Fig. 7) sym- 
metry prevails at early times and a plume of denser 
solution forms. However, the two eddies which occu- 
pied a large fraction of the 1 : 4 cavity (Fig. 7(a)) are 
much smaller in the case of the 1 : 1 cavity (Fig. IO(a)). 
These eddies are at the comer where the mask meets 
the reactive surface and cannot be seen on the scale 
used for the vector plot of Fig. 10(a). Symmetry break- 

I I I1111111 , ,,,,u 

10-z 10-l 100 10’ 
ing occurs at later times (Fig. IO(b)). and the asym- 
metry becomes more pronounced at still later times 

Dimensionless Time. T (Figs. IO(c) and (d)). In the latter case. an eddy occu- 

FIG. 6. Spatially-averaged Sherwood number as a function pies a large portion of the cavity volume and this eddy 
of time for the 1 : 4 cavity and with the Rayleigh number as oscillates back and forth within the cavity (Figs. 10(c) 

a parameter. and (d)). 
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I MASK ,\ MASK 

(b) 

(d) 

FIG. 7. Concentration contour plot (left) and velocity vector plot (right) at different times for a 1:4 cavity, 
and for a Rayleigh number Ra = 10’. The outermost contour corresponds to C = 0.01. The bottom of the 
cavity corresponds to C = 1. Linear interpolation applies for the contours between. Dimensionless times 

are (a) T = 4.854 x 10e2, (b) T = 6.564 x IO-‘, (c) T = 8.525 x IO-‘, and (d) T = 9.064 x lo-*. 
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Position Along Active Surface 

FIG. 8. Local Sherwood number distribution along the active 
surface at different times for a I : 4 cavity and for a Rayleigh 

number Ra = IO’. 

Dimensionless Time, T 

FIG. 9. Spatially-averaged Sherwood number as a function 
of time for the 1 : 1 cavity and with the Rayleigh number as 

a parameter. 

The local mass transfer distribution is shown in Fig. 
11 for the same times as in Fig. 10. At early times, a 
local minimum appears at or around the midpoint 
of the active surface. As in Fig. 8, this minimum is 
associated with the formation of a plume. At later 
times, the plume shifts to the comers of the cavity 
mouth and the mass transfer rate is less non-uniform. 
The broad maximum in mass transfer rate at later 
times is in the area where an eddy encounters the 
cavity bottom. Since the eddy oscillates, the maximum 
in mass transfer oscillates as well. 

Figure 12 shows the spatially-averaged Sherwood 
number as a function of time for the 2 : 1 cavity and for 
different Rayleigh numbers. One observes the same 
general qualitative features as for the 1 : 1 cavity (Fig. 
9). However, the values of .Sh are generally lower 
for the 2: 1 cavity, although the difference is not as 
pronounced as when comparing the 1: 1 cavity to 
the 1: 4 cavity. The concentration and velocity vector 
plots for Ra = 10’ and at four different times are 
shown in Fig. 13. Similar features are noticed as 
in Fig. 10, i.e. the formation of a symmetric plume 
at early times, symmetry breaking and oscillatory 
behavior at later times. The flow patterns inside the 

cavity are very complex. The local mass transfer dis- 
tribution for the 2: 1 cavity exhibited the same 
features as for the 1 : 1 cavity (Fig. 11). 

4.2. Forced concection system 
Only the steady-state results are shown for the 

forced convection system. Table 1 shows the relation- 
ship between the Peclet number (as defined by equation 
(18) and UX (or equivalently the shear rate) for differ- 
ent cavity aspect ratios. In all cases fluid entered the 
cavity from the left (Fig. 4). Figures 14(a) and (b) 
show the concentration contour plot and the velocity 
vector plot, for the 1 : 4cavity with Pe = lo3 (Re = 1). 
The external flow penetrates the cavity washing away 
the reaction products. The fluid velocity is relatively 
low in the corner regions of the cavity bottom where 
eddies form. These eddies cannot be resolved on the 
scale used for the velocity vector plot. The flow pat- 
terns are similar for Re = 0.1 and 10, but the velocities 
differ. The local Sherwood number for the 1 : 4 cavity 
is shown in Fig. 14(c) for three values of Pe. As 
expected, the average .Sh increases with increasing Pe 
(see also Table 1). The mass transfer rate is relatively 
high around the region where the external flow first 
encounters the cavity bottom (around .I’ = - 0.4. see 
Fig. 14(a)). The mass transfer rate passes through a 
local minimum around the region where the external 
flow turns away from the cavity bottom (around 
X = 0.5). The maxima and minima of the mass trans- 
fer rate can also be deduced from the concentration 
contour plot (Fig. 14(a)), where the spacing between 
the contours is an indication of the local mass transfer 
rate. 

Figure 15 shows the concentration contour plots 
for the 1 : 1 cavity and for three different values of 
Pe (Pe = lo’, 103, 104). In the 1: 1 cavity case, the 
external flow can no longer penetrate the cavity. 
Instead, a large recirculating eddy forms which fills 
the cavity volume. The formation of a mass transfer 
boundary layer along the active surface is clearly seen, 
especially for the higher values of Pe. The boundary 
layer becomes thinner as Pe increases. The con- 
centration is nearly uniform in the cavity core outside 
the boundary layer. Another ‘boundary layer’ is seen 
to form along the cavity mouth, preventing effec- 
tive communication between the external flow and 
the interior of the cavity. This communication can 
be restored in the presence of natural convection 
(Fig. 10). 

Figure 16 shows the local Sherwood number as a 
function of position along the active surface for the 
1 : 1 cavity and for different values of Pe. The rate of 
mass transfer increases and its distribution becomes 
less uniform as Pe increases. The mass transfer rate 
attains a maximum between the center and the right 
corner of the cavity bottom. This maximum is associ- 
ated with a clockwise eddy filling almost the entire 
cavity volume. The maximum occurs at the point 
where the eddy first encounters the cavity bottom. 
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(b) 

FIG. IO. Concentration contour plot (left) and velocity vector plot (right) at different times for a i : 1 
cavity, and for a Rayleigh number &!a = IO*. The outermost contour corresponds to C = 0.01. The botrom 
of the cavity corresponds to C = 1. Linear interpolation applies for the contours between. Dimensionless 

times are (a) T = 0.2113, (b) T = 0.3472, (c) T = 0.6372, and (d) T = 0.6922. 
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Position Along Active Surface 

FIG. 1 I. Local Sherwood number distribution along the 
active surface at different times for a I : 1 cavity and for a 

Rayleigh number Ra = 104. 

._ 
1 I 

Dimensionless Time. T 

FIG. 12. Spatially-averaged Sherwood number as a function 
of time for a 2 : 1 cavity and with the Rayleigh number as a 

parameter. 

The maximum becomes more pronounced as Pe 
increases. 

The concentration contour plots for the 2 : 1 cavity 
are shown in Fig. 17 for three values of Pe. The flow 
field in the 2: 1 cavity consists of a main clockwise 
eddy driven by the external flow, and a secondary 
counter-clockwise eddy underneath the first. The fluid 
motion is very weak in the secondary eddy and mass 
transfer in this region is mainly by diffusion, especially 
at low values of Pe. Hence the concentration contour 
plots deeper in the cavity are nearly parallel to the 
reactive surface. The corresponding local S/I dis- 
tribution is shown in Fig. 18. Mass transfer is nearly 
uniform for Pe = 10’ and 10’. However, mass transfer 
attains a maximum for Pe = 10’. The maximum is in 
the region where the secondary eddy first encounters 
the cavity bottom. 

The steady-state spatially-averaged Sherwood 
number results for the forced convection system are 
summarized in Table I (last column). By comparing 
with the corresponding values of the natural con- 
vection system (Figs. 6, 9, and 12), one observes that 
natural convection is particularly advantageous for 
enhancing mass transfer in high aspect ratio cavities. 

For example, for the 2 : 1 cavity and for a comparable 
magnitude of the fluid velocity at the center of the 
cavity mouth, natural convection yields a mass trans- 
fer rate one order of magnitude higher than forced 
convection. This is of great importance in etching of 
deep cavities. 

5. SUMMARY AND CONCLUSIONS 

The time-dependent mass transfer by natural con- 
vection in two-dimensional open cavities was studied 
for a Schmidt number of 10’. The Streamline Upwind/ 
Petrov Galerkin finite element method with an 
implicit predictor-multicorrector algorithm was 
employed. The method of mapped infinite elements 
was used to treat the unbounded domain. The effect 
of cavity aspect ratio and of Rayleigh number on the 
local and spatially-averaged Sherwood number was 
examined. Forced convection mass transfer cal- 
culations were also performed for different cavity 
aspect ratios and Peclet numbers. Emphasis was 
placed on a system simulating selective chemical 
etching of thin solid films in microelectronic device 
fabrication. 

In the natural convection system, plumes of denser 
solution formed, which caused ‘contaminated’ solu- 
tion to flow out of the cavity and ‘fresh’ solution to 
flow into the cavity, thereby providing an effective 
means of mass transport. This was especially true for 
high aspect ratio (deep) cavities which are difficult 
to access by other means as, for example, by forced 
convection. The flow and concentration fields were 
symmetric at early times. However, sj-mmetry break- 
ing and oscillatory flows, with concomitant oscil- 
lations in the mass transfer, were observed at later 
times. The oscillatory behavior was characterized by 
complex cellural flow patterns within the cavity. The 
mass transfer rate distribution was nonuniform along 
the active surface, and it was, in general. substantially 
lower at the corners where the inert surface (mask) 
met the active surface. This fact has implications for 
the etch anisotropy achievable with the natural con- 
vection system. The average mass transfer rate 
increased with increasing Ra and with decreasing cav- 
ity aspect ratio. 

Forced convection was effective in enhancing mass 
transfer in low aspect ratio (shallow) cavities. 
However, for deep cavities, slow recirculating flows 
and boundary layers along the cavity mouth pre- 
vented effective communication of the external flow 
with the cavity interior, causing a drastic decrease 
in mass transfer. The mass transfer rare distribution 
along the active surface was non-uniform, especially 
at high Peclet numbers. The average mass transfer 
rate increased with increasing Peclet number and with 
decreasing cavity aspect ratio. 

When compared to forced convection. natural con- 
vection is very attractive for enhancing the mass trans- 
fer in deep cavities. For example, for a ? : I cavity, and 
for comparable magnitude of the fluid velocity at the 
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FIG. 13. Concentration contour plot (left) and velocity vector plot (right) at different times for a 2: I 
cavity, and for a Rayleigh number Ra = IO’. The outermost contour corresponds to C = 0.01. The bottom 
of the cavity corresponds to C = 1. Linear interpolation applies for the contours between. Dimensionless 

times are (a) T = 7.520 x lo-‘, (b) T = 9.994 x lo-*, (c) T = 1.156 x IO-‘, and (d) T = 1.270 x IO-‘. 



220' C. B. SHIN and D. J. Ecosouou 

(a) 

1 ; ;____-_-. 
. _ - _ _ . . 

-1 0 1 

(b) 

-1.0 -0.6 -0.2 0.2 0.6 

Position Along Active Surface 

1.0 

(cl 

FIG. 14.‘Concentration contour plot (a) and velocity vector plot (b) for forced convection over a 1 :4 
cavity with Peclet number Pe = 10’ (Reynolds number Re = 1). The outermost contour corresponds to 
C = 0.01. The bottom of the cavity corresponds to C = 1. Linear interpolation applies for the contours 
between. (c) Local Sherwood number distribution along the active surface for forced convection over a 

1 : 4 cavity and for different Peclet numbers. 
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FIG. 15. Concentration contour plot for forced convection 
over a 1: 1 cavity: (a) Pe = 10’. (b) Pe = IO’, and 
(c) Pe = 10’. The outermost contour corresponds to 
C = 0.01. The bottom of the cavity corresponds to C = 1. 

Linear interpolation applies for the contours between. 
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FIG. 16. Local Sherwood number distribution along the 
active surface for forced convection over a 1: 1 cavity and 

for different Peclet numbers. 
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FIG. 17. Concentration contour plot for forced convection 
over a 2: 1 cavity: (a) Pe = 10’. (b) Pe = 10’. (c) Pe = 10’. 
The outermost contour corresponds to C = 0.01. The bot- 
tom of the cavity corresponds to C = 1. Linear interpolation 

applies for the contours between. 
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FIG. 18. Local Sherwood number distribution along the 
active surface for forced convection over a 2 : 1 cavity and 

for different Peclet numbers. 
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center of the cavity mouth, natural convection yielded 

a mass transfer rate one order of magnitude higher 
than that of forced convection. Therefore, natural 
convection may be useful in etching of deep cavities. 

The system examined in the present work is only a 
simplification of practical etching systems. For ex- 
ample, a cavity of invariant shape was considered, 
although shape evolution occurs during etching [IS]. 

However, the present work was thought to be a logical 
first step before examining the effect of natural con- 

vection on the shape evolution of cavities. Finally it 
should be noted that, from a practical point of view, 
natural convection may not be viable for very small 
geometries due to the strong dependence of Ra on the 

length scale (Ra - L3). Thus, for very small cavities, 
a very large acceleration field (r) may be needed to 

exceed the critical value of Ra for convection to set 

in. 
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TRANSFERT DE MASSE PAR CONVECTION NATURELLE ET FORCEE DANS DES 
CAVITES OUVERTES 

R&sum&-On etudie le transfert variable de masse par convection naturelle dans des cavites ouvertes 
bidimensionnelles en utilisant la methode des elements finis. L’attention est portie sur un systeme simulant 
la gravure chimique selective des tilms solides minces pour la fabrication des elements microelectroniques. 
Des nombres de Sherwood locaux d&pendants du temps et moyens dans l’espace sont rapportis pour un 
nombre de Schmidt de IO’, des rapports de forme de cavitt (profondeur : largeur) de 1: 4, 1: 1 et 2: 1 et 
pour des nombres de Rayleigh allant jusqu’l 105. Les champs d’ecoulement et de concentration sont 
symetriques au debut. La symttrie disparait et des ecoulements oscillants s’installent ensuite. La formation 
de panaches se produit a cause de la communication entre la solution externe neuve et la solution usee 
dans la cavite, specialement pour des cavites profondes qui sont d’ac& difficile. On etudie aussi la 
convection for&e de masse pour des nombres de Peclet allant jusqu’ti 10J. Les rCsultats sont importants 

pour les gravages anisotropes profonds des films minces solides et d’autres prockdis connexes. 
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STOFFtiBERGANG DURCH NATtiRLICHE UND ERZWUNGENE KONVEKTION IN 
OFFENEN HOHLRAUMEN 

Zusammenfaswng-Mit einer Finite-Elemente-Methode wird der zeitabhangige StotTtransport durch 
natiirliche Konvektion in zweidimensionalen offenen Hohlrlumen untersucht. Damit sol1 selektives chem- 
isches Atzen diinner Schichten simuliert werden, wie es bei der Fertigung im Bereich der Mikroelektronik 
angewandt wird. Zeitabhlngige, cirthche und raumlich gemittelte Sherwood-Zahlen werden fiir eine 
Schmidt-Zahl von 10’. fiir Seitenverhiiltnisse des Hohlraums (Tiefe : Breite) von 1: 4, I : I und 2 : I und fiir 
Rayleigh-Zahlen bis IO’ dargestellt. Strcimungs- und Konzentrations-Verteilung sind anfangs symmetrisch, 
splter treten jedoch ein Aufbrechen der Symmetrie und ein Schwingen der Striimung auf. Die Ausbildung 
von Auftriebsfahnen fiihrt zu einem effektiven Austausch zwischen der IuBeren “sauberen” Atzliisung und 
der “verschmutzten” LBsung innerhalb des Hohlraums. Dies ist besonders fir tiefe Hohltiume wichtig. die 
sonst schwer zuginghch sind. Es wird such erzwungene Konvektion fiir Peclet-Zahlen bis IO4 untersucht. 
Im Vergleich zur erzwungenen Konvektion ergibt sich bei natiirlicher Konvektion im 2 : I-Hohlraum eine 
Erhiihung des Stoffaustausches urn eine GriiBenordnung. Die Ergebnisse sind von grol3er Bedeutung fiir 

tiefe anisotrope Atzungen diinner Schichten und andere Ihnliche Prozesse. 

MACCOI-IEPEHOC ECTECTBEHHOR H BbIHYmAEHHO$i KOHBEKHMEti B 
HESAMKHYTbIX I-IOJIOCTlIX 

~~M~TO~IOM xorrexrmrx oner+tenron smcnenyerca rrecrannotraprr~ Macconepenoc, ebmeanti 
ecrecreesurol roanexusieil B ney~ep~bu He3abu~y~srx nonocrxx. Oco6oe nmih4amie yne-.naeTcn 
CHCTeMe, MOJWJlHpyKWefi R36HPaTeJIbHOe x~~mec~oc TpaaneHHe TOHKHX ~~epAbiX unetror, npHhceHne- 

Moe UpH ~~OH~BOACTW MHKpO3JlerrpOHHblX 3neMeHTon. rIpeACTaEaneHbl3aBucnIAHe OT BpehleHH noxa- 
nbnbre H II~oCT~BH~~B~HHO yCpeAHeHHble 3HaqeHAn YHCna JIlepeyAa AAR 3HaqeHHn qHcIIa IIIMAnra lo’, 
OTHOIUeHH# CTOPOH nOnOCTH (UQ’6HHa : UlXpHHa) 1 : 4, 1 : 1 H 2 : 1 H mX3HaSeHHfi ‘4HCJla F%leK BllJlOTb 

A0 10: Ha Ha'IaJIbHOi CTaAHH IlOAn CKOpOCTefi Te'feHHn H KOHueHTpauHfi nBJlIM)TCnCHMM~HYHM.WI. 
OAHaKo Ha 6onee no3AHHxcTapHnx npowxonm HapyrueHHe CHMM~T~H ti 803HHKawT rone6aTenbHbre 
pe9KHMS.I. 06pa30BaHHe BOCXOAnlUHXcTpyii l'XpHBOAHTK3#WI'HBHOMy B3aHMOAekCTBHto BHOBblIO‘ZTy- 

IIIuoIAerO kBeYer0" TpaBHAbHOrO paCTBOpa C "3arpn3HeHHbIMw pXTBO~M,OCO6eHHO ANI rnr6oxnx 
nonocrefi, nocryn n roropbre B npoTEf~~0~ cnynae 3arpyrureH. MccnenyeTcn Ta~xe MacconepeHoc 

ebu4yrpeHHol KoHacuprefi np~3tla9e~sfn~nncna llerneA0 lO*.~o~pan~e~~~)~cnysae~ebnly*nea- 
HOfi KOHWKUHH WTCCTBWHOXOHBCKTHBHbIfi MXCOll~HOC Ha IIOpnAOK HHTeHCHBHeii B IIOJIOCTH C OTHO- 
UeHHeM cropoH 2 : 1. ITonygemrbre pe3ynbTaTbi AMeioT 6onbmoe 3HaqeHHe nrrn rny6ororo 


